J INTEGRAL

Definition of J integral

Study the integral

\[
J = \int_{\Gamma} \left(w n_i - T_i \frac{\partial u_i}{\partial x_1} \right) ds
\]

\[
= \int_{\Gamma} \left(w n_i - \sigma_{ij} n_j \frac{\partial u_i}{\partial x_1} \right) ds
\]

in which \(w \) is the energy per unit volume,

\[
w = \int_0^{\epsilon_{ij}} \sigma_{ij} d\epsilon_{ij} \Rightarrow \sigma_{ij} = \frac{\partial w}{\partial \epsilon_{ij}}
\]

and the integration path \(\Gamma \) is a closed path in an arbitrary plane body (i.e., \(\Gamma \) is not the outer contour of the body).

Proof of path independence of J

Study the above-defined integral

\[
J = \int_{\Gamma} \left(w n_i - \sigma_{ij} n_j \frac{\partial u_i}{\partial x_1} \right) ds
\]

We now want to prove that \(J = 0 \), if \(w(x_i), u_i(x_j) \) and \(\sigma_{ij}(x_k) \) are differentiable within \(R \) and if \(\sigma_{ij} = \frac{\partial w}{\partial \epsilon_{ij}} \).

We first use the *Einstein summation convention* and the *divergence theorem*:

\[
J = \int_{\Gamma} \left(w \delta_{ij} n_j - \sigma_{ij} n_j \frac{\partial u_i}{\partial x_1} \right) ds = \int_R \frac{\partial}{\partial x_j} (w \delta_{ij} - \sigma_{ij} \frac{\partial u_i}{\partial x_1}) dR
\]

The integrand can be simplified:

\[
\frac{\partial}{\partial x_j} \left(w \delta_{ij} - \sigma_{ij} \frac{\partial u_i}{\partial x_1} \right) = \frac{\partial w}{\partial x_1} - \frac{\partial \sigma_{ij}}{\partial x_1} \frac{\partial u_i}{\partial x_j} - \sigma_{ij} \frac{\partial}{\partial x_1} \left(\frac{\partial u_i}{\partial x_j} \right)
\]

We further realize that

\[
\frac{\partial w}{\partial x_1} = \frac{\partial w}{\partial \epsilon_{ij}} \frac{\partial \epsilon_{ij}}{\partial x_1} = \sigma_{ij} \frac{\partial \epsilon_{ij}}{\partial x_1},
\]

that (by equilibrium)

\[
\frac{\partial \sigma_{ij}}{\partial x_j} = 0,
\]

and that by the definition of strain

\[
\epsilon_{ij} = \frac{1}{2} \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right).
\]

\(i.e., \)
We have therefore shown that
\[\frac{\partial}{\partial x_j} \left(w \delta_{ij} - \sigma_{ij} \frac{\partial u_i}{\partial x_j} \right) = \sigma_{ij} \frac{\partial \epsilon_{ij}}{\partial x_j} - \sigma_{ij} \frac{\partial}{\partial x_j} \left(\frac{\partial u_i}{\partial x_j} \right) = \sigma_{ij} \left[\frac{\partial \epsilon_{ij}}{\partial x_j} - \frac{\partial}{\partial x_j} \left(\frac{\partial u_i}{\partial x_j} \right) \right] \]
\[= \sigma_{ij} \frac{\partial}{\partial x_j} \left(\epsilon_{ij} - \frac{\partial u_i}{\partial x_j} \right) = \sigma_{ij} \frac{\partial}{\partial x_j} \left[\frac{1}{2} \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right) - \frac{\partial u_i}{\partial x_j} \right] \]
\[= \sigma_{ij} \text{ symmetric} \cdot \frac{\partial}{\partial x_j} \left[-\frac{1}{2} \left(\frac{\partial u_i}{\partial x_j} - \frac{\partial u_j}{\partial x_i} \right) \right] \equiv 0 \]

We have therefore shown that
\[J_{r_e} = \int_{r_e} \left(wn - \sigma_{ij} n_j \frac{\partial u_i}{\partial x_1} \right) ds = \int_{r_1 - r_2} \left(wn - \sigma_{ij} n_j \frac{\partial u_i}{\partial x_1} \right) ds = 0, \]
(cf. figure below), which, in turn, means that
\[J_{r_1} = \int_{r_1} \left(wn - \sigma_{ij} n_j \frac{\partial u_i}{\partial x_1} \right) ds = J_{r_2} = \int_{r_2} \left(wn - \sigma_{ij} n_j \frac{\partial u_i}{\partial x_1} \right) ds, \]
and the path-independence of J_r has been proved.

Relation between J surrounding a crack tip and G

Study a linearly or nonlinearly elastic plane body containing a crack:
We already know that

\[G = \frac{d}{dA} (W - U^e) \]

This can be rewritten in a convenient way, using the definitions of \(W \) and \(U^e \):

\[W - U^e = \left(\int_T T_k u_k ds - \int_R \dot{w} dR \right) B \]

where \(T \) is the closed integration loop shown in the figure (following also the crack flanks in order to close the loop) and \(B \) is the thickness of the plane body.

With \(\frac{d}{dt} = \frac{d}{dA} \frac{dA}{dt} \), this gives

\[\frac{dA}{dt} \frac{d}{dA} (W - U^e) = \frac{dA}{dt} \left[\left(\int_T T_k \frac{du_k}{dA} ds - \int_R \frac{dw}{dA} dR \right) B \right] \]

and, consequently,

\[G = \frac{d}{dA} (W - U^e) = \int_T T_k \frac{du_k}{dA} ds - \int_R \frac{dw}{dA} dR \]

We now want to use this for studying the (virtual) growth \(da \) of a crack and introduce a new coordinate system \(x_1, x_2 \) with its origin at the crack tip. For this,

\[\begin{align*}
 x_1 &= X_1 + a \\
 x_2 &= X_2
\end{align*} \]

and therefore

\[\frac{du_k}{da} = \frac{d}{da} \left[u_k[a, X_i(a)] \right] = \frac{\partial u_k}{\partial a} + \frac{\partial u_k}{\partial X_i} \frac{\partial X_i}{\partial a} + \cdots = \frac{\partial u_k}{\partial a} - \frac{\partial u_k}{\partial X_1} \]

and

\[\frac{dw}{da} = \cdots = \frac{\partial w}{\partial a} - \frac{\partial w}{\partial X_1} \]

We can now rewrite \(\frac{d}{da} (W - U^e) \):

\[\frac{d}{da} (W - U^e) = \int_T T_k \left(\frac{\partial u_k}{\partial a} - \frac{\partial u_k}{\partial X_1} \right) ds - \int_R \left(\frac{\partial w}{\partial a} - \frac{\partial w}{\partial X_1} \right) dR \]

But

\[\int_R \frac{\partial w}{\partial a} dR = \int_R \frac{\partial w}{\partial e_{ij}} \frac{\partial e_{ij}}{\partial a} dR = \int_R \sigma_{ij} \frac{\partial e_{ij}}{\partial a} dR = \left[\text{principle of virtual work} \right] = \int_T T_i \frac{\partial u_i}{\partial a} ds \]

and therefore

\[\int_T -T_k \frac{\partial u_k}{\partial X_1} ds + \int_R \frac{\partial w}{\partial X_1} dR = \left[\text{divergence theorem} \right] = \int_R -T_k \frac{\partial u_k}{\partial X_1} + w_n ds \]

\[= J \]

or

\[G = J \]

\(J \) can therefore be considered as a theorem for the computation of \(G \) (under the conditions specified).