1. (1 point)
(a) What type of equation is this
\[\varepsilon_{ij} = \frac{1}{2} (u_{i,j} + u_{j,i}) \]
(b) Write the equation in full (without using tensor notations) for \(i = y \) and \(j = y \). Explain the meaning and the contents of the expression you give.
(c) What is the relationship between \(\varepsilon_{yz} \) and \(\varepsilon_{zy} \)?
(d) What is the relationship between \(\varepsilon_{yz} \) and \(\gamma_{yz} \)?

Solution and answer here:
(a) Equation of deformations (compatibility equation)
(b) With \(i = y \) and \(j = y \) one obtains the normal strain \(\varepsilon_{yy} \)
\[\varepsilon_{yy} = \frac{1}{2} \left(\frac{\partial u_y}{\partial y} + \frac{\partial u_y}{\partial y} \right) = \frac{\partial u_y}{\partial y} = \frac{\partial v}{\partial y} \]
where \(u_y = v \) is displacement in the \(y \) direction. The displacement is differentiated with respect to \(y \).
(c) \(\varepsilon_{yz} = \varepsilon_{zy} \)
(d) \(\varepsilon_{yz} = \frac{1}{2} \gamma_{yz} \)

2. (1 point)
Using the compliance method, the energy release rate \(G \) can be determined. What is the compliance of a structure?

Solution and answer here:
The compliance \(C \) is defined as
\[C = \frac{\Delta}{P} \]
where \(\Delta \) is the generalized displacement (displacement, angle, etc) and \(P \) is the load (generalized force, i.e., force, moment, etc). Thus, \(\Delta \) is the deformation associated with the load \(P \). The compliance is the inverse of the stiffness.
3. (1 point)
Define the Tresca effective (or equivalent) stress σ_e^T and explain the Tresca yield criterion.

Solution and answer here:
According to the Tresca criterion, the effective stress is the largest principal stress minus the smallest principal stress. Thus

$$\sigma_e^T = \sigma_1 - \sigma_3$$

where $\sigma_1 > \sigma_2 > \sigma_3$.

Yielding will occur when

$$\sigma_e^T = \sigma_Y$$

where σ_Y is the yield limit of the material.

4. (1 point)
When is the stair-case method used? Explain the method.

Solution and answer here:
When the fatigue limit is going to be determined experimentally, it can be done in a way proposed in the staircase method. Experiments are made at predetermined stress levels. If fatigue failure is obtained at one stress level, then the next test specimen is loaded at a lower stress level. On the other hand, if failure is not obtained (after a given number of loading cycles), then the next test specimen is loaded at a higher stress level. After at least 15 to 20 tests, the number of failures and run-outs are counted. The less frequent event (either failures or run-outs) is analyzed, and conclusions can be drawn on the fatigue limit of the material and the scatter (the standard deviation) of the limit.
5.
For a brittle material, the ultimate strength in tension has been determined to $\sigma_{Ut} = 100$ MPa and the ultimate strength in compression has been determined to $\sigma_{Uc} = 200$ MPa.
(a) What ultimate strength in shear τ_U is expected for this material. Assume that the Mohr failure criterion can be applied using a straight line in the $\sigma\tau$-diagram.
(b) A stress state is given by $\sigma_x = 50$ MPa, $\sigma_y = 0$, and τ_{xy}. Determine the maximum value of τ_{xy} that can be allowed if failure should be avoided.

Solution:
The figure gives for the two Mohr circles given (for tension and compression, respectively)

\[
\frac{50}{s - 50} = \frac{100}{s + 100}
\]
giving $s = 200$ MPa.
(a) The shear load gives the Mohr circle with centre at the origin. This circle, together with the circle due to the tension load, give

\[
\frac{R}{200} = \frac{50}{150}
\]
giving $R = 67$ MPa. Thus the ultimate strength τ_U in shear is expected to be 67 MPa.
(b) For $\sigma_x = 50$ MPa, $\sigma_y = 0$, and τ_{xy} unknown the centre of the Mohr circle will be at $\sigma_c = 25$ MPa. To obtain failure, a circle with centre at $\sigma_c = 25$ MPa should have the radius R_f, where R_f is obtained from

\[
\frac{R_f}{175} = \frac{50}{150}
\]
giving $R_f = 58$ MPa. The radius of Mohr’s circle is obtained from

\[
R = R_f = \sqrt{\left(\frac{\sigma_c - \sigma_y}{2}\right)^2 + \tau_{xy}^2}
\]
giving $58 = \sqrt{\left(\frac{50}{2}\right)^2 + \tau_{xy}^2}$

from which $\tau_{xy} = 52$ MPa is solved. Thus, to avoid failure the shear stress τ_{xy} should be less than 52 MPa.
A loading sequence of a structure with an edge crack (see figure) is composed of \(m \) cycles with pulsating stress 0 to 100 MPa to 0 and one single cycle with pulsating stress 0 to 150 MPa to 0, see the lower figure.

Paris’ law for the material reads

\[
\frac{da}{dN} = 5.1 \times 10^{-12} (\Delta K_1)^{4.17} \text{ m per cycle}
\]

where \(\Delta K_1 \) has the unit MPa m\(^{1/2} \) (and \(n = 4.17 \)).

(a) Which is the minimum crack length \(a_{\text{min}} \) required to give crack propagation at the stress cycle to 100 MPa? The material has threshold value \(\Delta K_{\text{th}} = 8 \) MPa m\(^{1/2} \)

(b) Assuming \(a > a_{\text{min}} \), how many cycles \(m \) to stress level 100 MPa are required to give the same crack growth as one single cycle to stress level 150 MPa?

Solution:

(a) The stress intensity range is

\[
\Delta K_1 = \Delta \sigma \sqrt{\pi a} f_3 \left(\frac{a}{W} \right) = \Delta \sigma \sqrt{\pi a} \ 1.12
\]

For crack propagation to occur, the stress intensity range \(\Delta K_1 \) should be larger than the threshold value \(\Delta K_{\text{th}} \). Stress range 100 MPa then gives

\[
\Delta K_1 = 100 \sqrt{\pi a} \ 1.12 = 8 \ (= \Delta K_{\text{th}})
\]

which gives \(a = 0.0016 \) m (thus, \(a \) should be larger than 1.6 mm)

(b) Paris’ law gives, for a sequence of \(m \) cycles to stress level 100 MPa, the crack growth per sequence

\[
\frac{da}{dN_s} = 5.1 \times 10^{-12} \left\{ m \cdot (100 \sqrt{\pi a} \ 1.12) \right\}^{4.17} \text{ m per sequence}
\]

Paris’ law gives, for one cycle to stress 150 MPa, the crack growth per cycle

\[
\frac{da}{dN} = 5.1 \times 10^{-12} (150 \sqrt{\pi a} \ 1.12)^{4.17} \text{ m per cycle}
\]

The same crack growth in the two cases gives

\[
\frac{da}{dN_s} = 5.1 \times 10^{-12} m \cdot (100 \sqrt{\pi a} \ 1.12)^{4.17} = \left(\frac{da}{dN} \right) 5.1 \times 10^{-12} (150 \sqrt{\pi a} \ 1.12)^{4.17}
\]

which gives \(m = 150^{4.17/100^{4.17}} = 5.4 \).

Thus, 5.4 cycles to stress level 100 MPa give the same crack growth as one cycle to stress level 150 MPa.
The structure in the figure is loaded by a force \(P = P_0 \pm P_0 \). Determine, with respect to fatigue failure at hole A, the maximum allowable value of \(P_0 \). The hole is machined (\(R_a = 7 \) µm) and it has a diameter of 10 mm.

Numerical data: ultimate strength \(\sigma_u = 640 \) MPa, yield limit \(\sigma_Y = 360 \) MPa, fatigue limit \(\sigma_{FL} = 240 \) MPa and \(\sigma_{FLP} \) is unknown (use thumb rule \(\sigma_{FLP} \cong 0.85\sigma_{FL} \)). \(H = 200 \) mm and \(h = 10 \) mm.

Solution:

The nominal stress at the hole becomes \(\sigma_{nom} = Mz/I \) where \(M = P \cdot 40H \), \(z = H/2 \) and

\[
I = \frac{(H + h)^4 - (H - h)^4}{12}.
\]

One obtains \(\sigma_{nom} = 14963P = 14963(P_0 \pm P_0) \) N/m\(^2\) (\(P \) in N).

The stress concentration factor \(K_t \) at the hole is \(K_t = 3.0 \) (we use here the case "a small hole in a large plate"). This gives the fatigue notch factor

\[
K_t = 1 + q(K_t - 1) = 1 + 0.84 \cdot (3 - 1) = 2.68.
\]

The factors reducing the fatigue limit due to surface finish and volume become (approximately): \(\kappa \cong 0.86 \), \(\lambda \cong 1.0 \) and \(\delta = 1 \).

The upper plate (in which the hole is) of the beam cross section is loaded mainly in tension (the bending may be neglected). Use fatigue limit \(\sigma_{FL} \) (rather than \(\sigma_{FLB} \)). Pulsating load implies that the fatigue limit \(\sigma_{FLP} \) should be used. One obtains \(\sigma_{FLP} = 0.85 \sigma_{FL} = 204 \) MPa.

By use of the reduction factors one obtains

\(\sigma_{FLP}^{red} = \kappa\lambda\delta\sigma_{FL}^{red} = \kappa\lambda\delta\cdot 0.85 \sigma_{FL} = 0.86 \cdot 1.0 \cdot 1.0 \cdot 204 \) MPa = 175 MPa,

and \(\sigma_{FL}^{red} = 0.86 \cdot 1.0 \cdot 1.0 \cdot 240 \) MPa = 206 MPa.

The amplitude \(P_0 \) of the load gives the stress amplitude \(K_t\sigma_{nom} = 2.68\cdot\sigma_{nom} \).

Let \(K_t\sigma_{nom} = \sigma_{FLP}^{red} \). It gives

\[2.68\cdot14963P_0 = 175\cdot10^6, \text{ which gives } P_0 = 4.36 \text{ kN}.
\]

Answer: If no safety factor is used, the load \(P \) may be \(P = 4.36 \pm 4.36 \) kN.

Comment:

When \(K_t\sigma_{nom} = \sigma_{FLP}^{red} \) was used, a small approximation was made. As seen in the Haigh diagram, the service stress will not meet the curve giving the fatigue limit exactly at \(\sigma_{FLP}^{red} = 175 \) MPa. An exact value of the allowed stress amplitude is obtained from the intersection of the two curves

\[\sigma_a = \frac{2.68}{3.0} \sigma_m \text{ and } \sigma_a = 206 - \frac{31}{204} \sigma_m \]

giving \(K_t\sigma_{nom} = 176 \) MPa, from which almost the same \(P_0 \) as above is obtained.
A flat plate has a *small elliptical* hole, see figure. The major axis $2b$ is perpendicular to the direction of the stress. The minor axis is $2a$, and $b = 2a$. The plate is subjected to the stress $\sigma_{\infty} = 100 \pm 150$ MPa. Estimate the number of stress cycles to fatigue failure by use of Neuber’s method. Assume that $K_f = 0.9K_t$.

Use the Ramberg-Osgood’s material relation for amplitudes ($E = 200$ GPa, $K' = 1344$ MPa, $n' = 0.18$)

$$\varepsilon_a = \frac{\sigma_a}{E} + \left(\frac{\sigma_a}{K'} \right)^{1/n'}$$

with appropriate modifications of the formula for changes $\Delta\sigma$ of the stress.

For the fatigue life analysis, use the Coffin-Manson relation, with numerical values $\sigma_U = 800$ MPa, and $\Psi = 0.65$.

Solution:

The stress concentration factor K_t is $(1 + 2b/a) = 5$. No information for calculation of the notch sensitivity factor q is given here. Instead, $K_f = 0.9K_t$ was given. Thus, use $K_f = 0.9 \cdot 5 = 4.5$.

The maximum local stress σ_{max} and the maximum local strain ε_{max} at the notch are not needed here, because in Coffin-Manson’s relation the stress mean value is not included. Only the change of strain, i.e. the strain range $\Delta\varepsilon$, is required. This strain range is obtained as the point of intersection between the Neuber hyperbola and the material stress-strain relation for load changes. One obtains, for a nominal change of stress $\Delta\sigma_{\infty} = 300$ MPa (change of stress far away from the stress concentration),

$$\begin{align*}
\Delta\sigma \cdot \Delta\varepsilon &= \frac{K_f^2 (\Delta\sigma_{\infty})^2}{E} = \frac{4.5^2 \cdot 300^2}{200 000} = 9.1125 \\
\Delta\varepsilon &= \frac{\Delta\sigma}{E} + 2 \left(\frac{\Delta\sigma}{2K'} \right)^{1/n'} = \frac{\Delta\sigma}{200 000} + 2 \left(\frac{\Delta\sigma}{2 \cdot 1344} \right)^{1/0.18}
\end{align*}$$

where $\Delta\sigma$ and $\Delta\varepsilon$ are changes of stress and strain at the stress concentration. From this system of equations $\Delta\varepsilon = 0.0098759$ and $\Delta\sigma = 922.7$ MPa are solved.

Now Coffin-Manson’s rule gives

$$\Delta\varepsilon = 3.5 \frac{\sigma_U}{E} (N)^{-0.12} + D^{0.6} (N)^{-0.6} = 3.5 \frac{800}{200 000} (N)^{-0.12} + 1.0498^{0.6} (N)^{-0.6}$$

For $\Delta\varepsilon = 0.0098759$ one obtains $N = 7080$ cycles.

Thus, failure is expected after, approximately, 7 000 cycles.